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Abstract

The notion of a semi-commutativity set for word mappings was de-
fined in [3] as an abstraction of a problem in cryptography. The notion
is of special interest in case the mappings are morphisms. Then rather
surprising constructions become possible. We investigate such construc-
tions, paying special attention to exceptional values of inverse mappings.
Some of our results bear a close relation to certain important issues in the
theory of formal languages.

1 Background of the problem

Consider the following problem in the theory of cryptographic protocols. A
seller, S, possesses a number of secrets. S has published a list of descriptions
of the secrets and is offering them for sale at a price that is the same for each
of the secrets. A buyer B wants to buy one of the secrets. However, he is not
willing to disclose to anybody, not even to S, which of the secrets he wants. On
the other hand, B should not learn more than one secret.

These two seemingly contradictory requirements, S disclosing the secret B
wants but no other secrets and S not knowing which secret he disclosed, can
be fulfilled using cryptographic protocols based on one-way functions. The first
solution suggested in [1] is very complicated. The solution in [7] is simple but
requires several buyers. Recently a simple solution in the original set-up of one
buyer has been given in [4]. The protocol for secret selling of secrets can also
be used as a building block for more complicated protocols, [2]. The reader is
referred to [6] as a general introduction to one-way functions and cryptographic
protocols.
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Let us look in more detail into our problem. Consider the secrets as words

W1, W2, ...,Wn.

More explicitly, the index 7 in w; tells what the secret is about, that is, proposes
a question, whereas the word w; gives the answer. The seller S has his own
personal encryption and decryption functions Eg and Dg such that

DS(ES(w)) = w,

for all values w under consideration. Similarly, B has his functions Fp and Dp.
We can now define a protocol as follows.
Step 1. S gives B the sequence

Es(’wl), ceey Es(wn)

Step 2. If B wants the secret indexed by b, he gives S the value EgFEg(wp).
Step 3. S gives B the value DgEpEg(wp). 0
If we now have

(*) DBDSEBES(U/b) = Wy,

B has learned the secret he wants. There are further cryptographic require-
ments.

(i) B should not be able to learn anything from the words he gets in Step
1. In particular, he should not be able to determine the mapping Dg, although
he knows x = EgEs(wp) and Dg(x).

(ii) Although S knows both all words w; and Eg(w;), he should not be able
to learn b from EpFEg(wp).

The requirements (i) and (ii) concern the specific encryption and decryption
methods used, and will not be dealt with in this paper. Instead, we focus the
attention on the equation (x). Thus, cryptographic properties of the E’s and
D’s will be ignored. Essential in our considerations will be that Dg and Dp are
left inverses of Es and Ep, respectively. Such a study of the equation (x) was
begun in [3].

Of special interest is the case where the mappings Es and Ep are morphisms
in the language—theoretic sense. Then the resulting problems concern also some
rather basic issues of language theory. This will be the subject matter of the
present paper.

The basic definitions and some initial observations will be given in the next
section. Section 3 solves some problems posed in Section 2 and, at the same
time, exhibits some constructions dealing with inverses. A very crucial issue is
how the values may be defined for left inverses in case the values are not ”forced”
by the argument values. This leads to three classes — smooth, semi—smooth and
unrestricted—left inverses investigated in Sections 4 — 6. Undecidability results
are presented in Section 7 for the unrestricted case. Finally, we outline some
further work and open problems.



We refer to [5] for all unexplained notions in language theory, in particular,
for issues dealing with equality sets and codes.

2 Definitions and the basic set-up

Let X be a finite alphabet and ¥* the set of all words over %, including the empty
word A. In algebraic terms, ¥* is the free monoid generated by X, where the
operation is catenation (juxtaposition) and A is the unit element. The length of
a word w € ¥* is denoted by |w|. We will be mostly concerned with morphisms
(usually denoted by f and g) of X* into X*. Clearly, such a morphism f is
completely defined if the values f(a), for a € 3, are specified.

Our starting point is the requirement (*), now written in the form

() g7 fg(w) = w, for all w € B*.

Here f~' and g~ are left inverses of f and g, that is,
(%) 1 (w) =w= g tg(w), for all w € T*.

The existence of left inverses satisfying (+*) implies that f and g are injective.
According to the customary terminology, [5], injective morphisms over ¥* are
called codes.

The condition (%)’ was investigated in [3] in the case, where f and g are
arbitrary word mappings, or even mappings defined on an arbitrary set rather
than ¥*. The case studied in this paper, where f and g are codes, is of special
interest in language theory because some fundamental issues such as equality
sets are involved.

We now proceed to the basic definitions. The equality and commutativity
sets for pairs (f, g) of morphisms are defined by:

E(f,9) = {w € ¥ f(w) = g(w)},
COM(f,g9) = {w € ¥*| fg(w) = gf(w)}.

The reader is referred to [5] for the basic theory concerning equality sets. For
commutativity sets, it is important that also the range alphabet of the mor-
phisms equals .. Clearly,

COM(f,g) = E(fg, 9f)-

Let f and g be codes and let f~! and ¢! be (some of) their left in-
verses. Then the semi—commutativity set associated to the ordered quadruple
(f~'.97" [, g) is defined by

SCOM(f ™, 97" f.9) = {w € X[ f1g7" fy(w) = w}.



The ordered quadruple (f=1, g7, f,g) is termed semi—commutative iff
SCOM(f~1,g7" f,9) = 2"

We will see that the order of f and ¢ is important in the definition: a
different semi—commutativity set may result if the order of f and g is changed.
Semi-commutativity sets can sometimes be expressed in terms of equality sets
as follows:

SCOM(f~ ', g7, f.9) = E(f ‘g~ " fyg,id),

where id is the identity morphism. This representation is not always valid
because, as will be seen below, f~'¢~!fg is not always a morphism. It is also
clear that the commutativity set COM(f, g) is included in the intersection

SCOM(f~, g7, f,9) NSCOM(9™ ", . g, f).
The pair (f, g) is termed commutative iff
COM(f,g) = ¥~

We will address first the following problems (P1)—(P3). The problems were
investigated in [3] in a more general set-up. We state the problems for codes
and their left inverses.

(P1). Give examples showing that the commutativity and semi — commu-
tativity sets may differ.

(P2). Give examples of f, g, f~1, g~ 1, such that

SCOM(f~ ', g7, f,g) # SCOM(¢~", f*, 9, f).

(P3). Give examples of f and g, and of their left inverses f; ', fy ' and g; ',
o L such that the sets

SCOM(f; ', g7, f.9), SCOM(fr 95", 1, 9),
SCOM(f; ", 97", f.9), SCOM(fy ", 95", f.9)

are all different.

At a first glance, such examples might seem contra-intuitive.(This was at
least partially due to the fact that the case of morphisms was treated very
quickly in [3].) The point is that only the equation

[ Hf(w) = w, forall w € X,

is required in the definition of f~!: for words w outside the range of f, we are
free to define f~! as we please. In what follows words of the form f(w) are
referred to as forced as far as the definition of f~! is concerned.

We will also consider some restrictions concerning the definition of f~! for
non-forced values. A very useful notion is that of a smooth inverse.



Assume that f is a constant-length code, that is, there is an integer ny > 1
such that
|f(a)] =ny, foralla € X.

For a constant-length code f, a left inverse f~! is termed smooth iff f~!is a
(total) mapping of ¥* into X* satisfying the following conditions (i)—(iv).

(i) f7'f(a) = a for all @ € . (This is of course obvious because f~! is a
left inverse. It is stated here just for the sake of completeness.)

(ii) |f~'(w)| = 1 whenever |w| = ny.

(iii) f~'(w) = X whenever |w| < ny.

(iv) f~Ywy...wpu) = f~Hw) ... f~ (wy), whenever k > 1, |wy| = ... =
jwn] = ng, Jul < ny.

Theorem 1 A smooth left inverse f~1 is uniquely determined by the values
[~ H(w), where |w| = nys. It is a morphism exactly in case ny = 1. In that case
f~ 1 is also a code.

Proof. The first sentence is clear by the definition because the decomposition
of words longer than ny in the form required in (iv) is unique. Assume that
ny = 1. Since f is a code, it permutes the letters of ¥. By (i) and (ii), f~!
must be the inverse permutation and hence, by (iii) and (iv), f~! is a code.
Assume, finally, that ny > 1. Let w; and wy be words of lengths ny and ny —1,
respectively. Then

|f~ (wiwe)| =1, f~ N (wa) = A, [f 7 (wiwawy)| = 2.

Consequently, f~!(wjwows) # f~ (wiws)f~(wsz), which implies that f~! is
not a morphism. n

The connection between semi-commutativity sets and equality sets is ex-
pressed by the equation

SCOM(f~ ', g7 %, f.9) = E(f ‘g~ fy, id),

valid in case f~'g~!fg is a morphism. This requirement is satisfied for smooth
left inverses.

Theorem 2 Assume that f and g are constant length codes (possibly ny #
ng), and that f=' and g~ are smooth. Then f~1g='fg is a letter-to-letter
morphism.

Proof. For a € ¥, the lengths of g(a), fg(a), g~ fg(a) and f~tg~'fg(a) are
ng, ngnyt, ny and 1, respectively. Thus, f~1g7! fg maps letters into letters. To
show that f~1g~!fg is a morphism, it suffices to prove that, for a € ¥ and
w € ¥*, we have

(%) f g7 fglaw) = g fg(a) fl g fa(w).



Because fg is a morphism, we obtain

f g7 fglaw) = g7 (fg(a) fa(w)).

Since always the first letter of f~1g~!(z) is completely determined by the prefix
of length n sny of z, we conclude that f~'g~! fg(a) is the first letter on the right
side and that, consequently, the claim (x) follows. n

3 Illustrations of various constructions

In this section we will provide answers to the problems (P1)—(P3) by effectively
constructing morphisms f,g and left inverses f~!,g~!, which satisfy the re-
quested relations. The idea is namely to use the fact that, except for the forced
values, we are free to define the left inverse of a code as we like. Consequently,
we can define the non-forced values of the left inverses in a way that suits our
purposes.

All the constructed morphisms will be constant-length codes and all the left
inverses will be smooth.

We begin by considering (P1). The following theorem provides an example
in which

SCOM(f~*, 97", f.g) # COM(f,g).

Theorem 3 There exist constant-length codes f,g, and smooth left inverses
f~Y 97" such that (f~1, 971, f,g) is semi-commutative, (f~1,g~') is commu-
tative, but (f,g) is not commutative.

Proof. Let ¥ = {a,b} and the morphisms f, defined by:
f: a—aa, b—bbd,

g: a—ab, b—ba.

The morphisms f,g are obviously constant-length codes with ny = ny, = 2.
Consider now the smooth left inverses f~! and g=! of f, respectively g:

f~': aa—a, bb—sb, ab—sa, ba—sb,
gt= f1

Note that, according to Theorem 1, the listed values are enough to uniquely
determine f~1, g71.

The quadruple (f~%, g1, f,g) is semi-commutative as for any word w € ¥*
we have:

Flg  fg(w) = g7 7 fg(w) = g7 g(w) = w.
(We have used the facts that f~! = g=! and f~! (resp. g~ !) is a left inverse of
[ (resp. g).)



The pair (f, g) is not commutative as we have:
fg(a) = a®v?® # abab = gf(a).
On the other hand, as f~! = g7, the pair (f~!,g~!) is commutative. 7

The following result shows that the sets SCOM(f~',¢g7 !, f,g) and
COM(f~1,¢g71) may also differ. As in the preceding proof, the fact that the left
inverses are smooth allows us to uniquely define them by listing only a finite
number of values.

Theorem 4 There exist constant-length codes f,g and smooth left inverses
f~Y 97" such that (f~',g7, f,g) is semi-commutative, (f,g) is commutative
but (f~1,971) is not commutative.

Proof. Let ¥ = {a,b} and define the morphisms f, g by
f: a—bab, b—aba,

g: a—aba, b—bab.

It is easy to see that f, g are constant-length codes with ny = n4, = 3.
Consider now the smooth left inverses f=1, g~ of f, respectively g,

f~t: bab—sa, bw—sb for w # ab, |lw| = 2,
aba—b, aw—sa for w # ba, |w| = 2.
g ' aw—sa for w e ¥?,
bw—b for w € ¥2.

These values uniquely define the left inverses f~1, g7 (Theorem 1).
According to Theorem 2, in order to prove that SCOM(f~1, g7, f,g9) = ©*
it suffices to show that the equality

[t fgla) =a

holds for any letter a € X..
In our case,

f7l97 fe(a) = f1g7 f(aba) = f g™ (bab aba bab) = f~ (bab) = a,
Flg™ fg(b) = f~ g7 f(bab) = f~ g™ (aba bab aba) = f ' (aba) = b,

and therefore the (f~1,¢g71, f,g) is semi-commutative.
The pair (f, g) is commutative as f, g are morphisms and the following equal-
ities hold:

fgla) = f(aba) = bababa bab= g(badb) = gf(a),
) f(bab) = aba bab aba = g(aba) = gf(b).



On the other hand, (f~!,¢~!) is not commutative as shown by the following

example:
f~tg7 (aba aaa bbb) = f~*(aab) = a #

g ' f~Y(aba aaa bbb) = g~ (bab) = b.
O

The problem (P1) is completely settled by the following theorem which pro-
vides morphisms £, g such that the set SCOM(f~1,¢g71, f,g) differs from both
COM(f,g) and COM(f~1,g71).

Note that, as in the preceding proof, the fact that f,g are constant-length
codes and their left inverses are smooth helps in proving the semi-commutativity.
Indeed, as in this case f~1g~!fg is a morphism, it suffices to show that

flg7 fg(a) = a, foralla € X.

Theorem 5 There exist constant-length codes f,g and smooth left inverses
f~Y,g7%, such that (f~1,9g7%, f,g) is semi-commutative but neither (f,g) nor
(f~Y,g71) is commutative.

Proof. Let ¥ = {a,b} and define the morphisms f, g by:
f: a—bbb, b—abb,

g: a—aaa, b—aab.

Clearly, f, g are constant-length codes with ny = n4, = 3.
-1

Consider now the smooth left inverses f~!, g~ 1,
f~': bbb—sa, aab—b, bab—:b, abb—sb, bba—sb,
w——>a for any other w € X3
g ': aaa—sa, bbb—b, bab—a, aab—sb, abb—a,
w—>a for any other w € X3,

1

Theorem 1 assures that f~1,g~! are uniquely defined by the above listed

values.
The quadruple (f~1, g1, f,g) is semi-commutative. Indeed, for the letters
of ¥ we have

fl97 fgla) = f~1g7" f(aaa) = f~1g" (bbb bbb bbb) = " (bbb) = a,

flg 7 fgb) = fF g7 f(aab) = f~ g™ (bbb bbb abb) = f~1(bba) = b.

According to Theorem 2, f~1g~! fg is a letter-to-letter morphism and there-
fore the above equalities imply

f g7 fg(w) = w,Vw € 5F,



that is, (f~1,¢7 %, f,9) is semi-commutative.
On the other hand, (f,g) and (f~',¢g7!) are not commutative as shown
below:

fg(a) = f(aaa) = bbb bbb bbb # g f(a) = g(bbb) = aab aab aab,
ftg7 (aab bbb bab) = f~1(bba) = b # g~ f~(aab bbb bab) = g~ (bab) = a.

O

The order of the terms in SCOM(f~1, g7 1, £, g) is quite essential. Indeed, the
following theorem shows that changing the order affects the semi-commutativity
set. This answers at the same time the problem (P2).

Theorem 6 There exist constant-length codes f,g and smooth left inverses
f~Y g7t such that (f~',g7 %, f,9) is semi-commutative but (g=', f~1, g, f) is
not.

Proof. Consider the alphabet ¥ = {a,b} and the morphisms
f: a—0bbb, b—abb,

g: a—aaa, b—aab.
It is clear that f, g are constant-length codes with ny = ng = 3.

Let us define now the smooth left inverses f=!, g=! of f respectively g by:

f~1: bbb—sa, abb—b, aab—sb, aab—sb, bba—b,
w—>sa, for other w € X3,

¢ ': aaa—sa, aab—b, bbb—sb, abb—a,
w—sa for other w € 33,

For the letters from ¥ we have
fg fgla) = fl g flaaa) = g™ (bbb bbb bbb) = f~'(bbb) = a,

flg7 fg(b) = f~g7 flaab) = f~ g™ (bbb bbb abb) = f~(bba) = b.

Consequently, using the fact that f~'g~!fg is a morphism (Theorem 2) we
deduce that SCOM(f~%, g7, f,9) = B*.

On the other hand, SCOM(g~!, f~1,g,f) # ¥* as a does not belong to
SCOM(g~1, f~1, g, f):

g fYgf(a) = g7 f T g(bbb) = g7 f~(aab aab aab) = g~ (bbb) = b # a.



We will conclude this section with a somewhat unexpected result. For a
fixed choice of morphisms f, g one can choose left inverses f; L fa 1. respec-
tively gfl, g;l such that (ffl, gfl, f,g) is semi-commutative, but all the semi-
commutativity sets SCOM(f;l,gjfl, f,9), 4,5 € {1,2} are paiwise distinct.

Theorem 7 There exist constant-length codes f,g and their smooth left in-
verses f1 ', fa ' 1", 95" such that the sets

SCOM(f{ " 97", f,9), SCOM(f7 ", 95", £, 9),
SCOM(f5 ", 917", f,9), SCOM(f5 ", 95", £, 9),

are all different.
Proof. Let ¥ = {a,b} and f, g be the morphisms defined by
f: a—bab, b—aba,

g: a—aaa, b—bbb.

It is easy to see that f, g are constant-length codes with ny = n4, = 3.
Consider now the following smooth left inverses of f:

fl_l : bab—a, aba—b, aaa—sa, bbb—b,
w—>a for any other w € X3,

f{l . bab—a, aba—b, aaa—b, bbb—a,
w—a for any other w € X3,

and the smooth left inverses of ¢:

gl_1 :  aaa—a, bbb—b, bab—sa, aba—b,
w—sa for any other w € X3,

g2_1 : aaa—a, bbb—b, bab—b, aba—b,
w—sa for any other w € 3.

In order to prove the theorem, we will make use of the following facts (i)

—(iv).
(i) SCOM(f; Y, g7h, f,9) = X*. Indeed, we have

fitar fe(a) = fi gy faaa) = fi gy (bab bab bab) = fi ' (aaa) = a,
and
flgr fe(b) = fi gyt F(bbb) = fi g1 (aba aba aba) = fi*(bbb) = b.

These equalities, together with Theorem 2 prove the requested relation.
(ii) a,b & SCOM(f; ', 97, f,g). This relation is proved by the following
equalities:
I3 0" fg(a) = f5 " (aaa) = b,

10



f{l T fg(b) = f5 ' (bbb) =
(iii) b € SCOM(f1 ,92 ,f,g) but a & SCOM(ffl,ggl,f,g).
The relations hold true as we have

frloz ' fo(b) = fi gy ' (aba aba aba) = fi (bbb) = b.

frloz fe(a) = fi gy " (bab bab bab) = fi (bbb) = b,

(iv) a € SCOM(f5*, 95", f,g) but b & SCOM(f5*, 951, f, 9).
This is proved by the following equalities:

f3 93 ' fe(a) = f5 gy " (bab bab bab) = f; (bbb) = a,

F5'95 T9(b) = f5 g5 (aba aba aba) = f;" (bbb) = a.
Using the relations (i) ( v) We can deduce:
1 (11) - SCOM(fl 791 7 7 ) 7& SCOM(fQ agl 7 79)

) +
i) + (i) = SCOM(fi .97, f,9) # SCOM(f1" g5, f,9)
i) + (iv) = SCOM(/, ", g, f,9) # SCOM(f, " g5 ", f. 9)

(i
0
(11) (111)$SCOM(JC2 7g1 7f7 )#SCOM(fl a92 7 7g)
Eu) (IV):>SCOM(f2 7g1 7 g )#SCOM(JCQ a92 afa )

111) (IV) - SCOM(fl ag2 ) a ) 7& SCOM(fQ 792 I 79)
and the proof of the theorem is complete. 0

4 Smooth left inverses

Recall that in Theorem 2 we proved that if f, g are constant-length codes and
f~tg~! are smooth then f~1¢g~!fg is a letter-to-letter morphism.

The following corollary of Theorem 2 gives an exhaustive characterization
of semi-commutativity sets in case of smooth left inverses.

Theorem 8 Assume that f, g, f~',g7' are as in Theorem 2. Then
SCOM(f=Y, g7, f,g9) = =%, for some ¥, C X.
(For ¥1 =0, it is agreed that X5 = {\}.)
It is important to observe that, even in the set-up of Theorems 2 and 8,
f~tg7'fg is not necessarily injective. In other words, although it is a mor-
phism, it is not necessarily a code. We consider the following example.
f: a—aba, b—abb (ny =3),

g: a—aa, b—bb (ng =2).

11



As regards arguments of lengths ny and ny, the forced values of f~! and g~!

are:
f~Yaba) = a, f~(abb) =b, g~ (aa) = a, g~*(bb) = b.

Hence, we are free to define
g " (ab) =b, g~ " (ba) = a.

Consequently,
g 'f9(a) = g~ ' (abaaba) = baa,
g " fg(b) = g~ (abbabb) = bab.

We are also free to define
£\ (baa) = £~ (bat) = a,
yielding
flg7 fgla) = f g7 fg(b) = a,

which shows that f~1¢g~!fg is not injective.
It is obvious that the construction of this example can be generalized to yield
the following result.

Theorem 9 For any letter-to-letter morphism h : X*—X*, constant-length
codes f and g, as well as their smooth left inverses f~ and ¢~ ', with the
property

flgfg=h

can be effectively constructed.

5 Considerations related to smoothness

No necessary and sufficient conditions are known for f~!g~!fg to be a mor-
phism. In particular, Theorem 2 does not yield a necessary and sufficient con-
dition. We now investigate matters related to this issue. We begin with a result
concerning the question about a left inverse being a morphism.

Theorem 10 Whenever a left inverse h™! of a morphism h : ¥* ——X* is itself
also a morphism, then it permutes the letters of ¥ and, hence, is a code.

Proof. Since h has a left inverse, it must be a code and, consequently, noneras-
ing. Hence, if ¥ = {a1,...,a,} we have for all ¢

h(ai) = 0aj, .- .ajk(i), k(Z) > 1.
Because h™! is a left inverse, we have

lflh(ai) =q;, 1<i<n.

12



Because h~! is a morphism, we have
h_lh(ai) = h_l(ajl s a’jk(i)) = h_l(ah) cee h_l(ajk(i))'
Consequently, for all 4,
a; = hil(ah) s hil(ajk(i))'
This is possible only if a; equals some of the factors on the right side:
a; = h_l(aa(i)), 1< a(i) <n.

Here « is a permutation of the set {1,...,n}, because if a(i) = a(j) for i # j,
then A~ would map @q(i) to both a; and ay, which is impossible. This implies
that h~! does not map any letters to A and, consequently, k(i) = 1. We have
shown that h~! is letter-to-letter and a code. O

We show next that the converse of Theorem 2 does not hold true. Indeed,
f~tg='fg may be a letter-to-letter morphism (even the identity morphism),
although neither f nor g is constant-length. We need the following auxiliary
result in our example.

Lemma 1 Every word w € {a,b}* posseses a unique decomposition
w=wi... WWkt+1, k>0,
where w; € {b,aa,ab}, 1 <i <k, and wi41 € {a, \}.

Proof. We read an arbitrary given w from left to right. If w begins with b, we
get a unique left factor w; = b, and may proceed with the shorter word. If
w=a orw =\, we get a unique w41 (k = 0 if this alternative holds initially),
and are through. Otherwise, w must begin either with aa or ab. In both cases
we get a unique left factor w; and may proceed with a shorter word. n

Consider now the morphism ¢ defined by
g: a—aa, b—b.

The values
g '(aa) =a, g7'(b) =b

are forced. Moreover, g~*(z) is forced for all € {aa,b}*, and is obtained by
the appropriate catenation of a and b. (Observe that also g~!(\) = X is forced;
this statement holds for all morphisms.)

We are free to define the values

g7\ (ab) = b, g~ (a) = A

13



We now write an arbitrary w € {a,b}* as in Lemma 1, and define

(*) g (w) =g (wr .. wpwpgr) = g (wr) g (wr)g T (wegr).

Thus, ¢! is total. For forced argument values, this definition coincides with
the one given above. Observe also that always g~ (wg11) = .
The morphism f is defined in the same way, with ¢ and b interchanged.
Explicitly,
f: a—a, b—0bb,

' a—a, bb—sb, ba—sa, b—\.

The definition () holds for f~' as well, with the corresponding change in
Lemma 1: the two sets of the lemma are now {a, bb,ba} and {b, A\}.

Consider the value f~1g~!fg(w). First fg doubles every letter in w. Then
g~ ! removes the doubling from the a’s but keeps it for the b’s until, finally, f 1
removes it also from the b’s. Consequently, f~tg~!fg is the identity morphism.
However, neither f nor g is constant length.

In this example, the non-forced values were not actually needed. However,
the example serves also as an introduction to the following definition. We first
generalize the situation of Lemma 1.

Let ¥ be an alphabet, and M;, Ms two finite subsets of ¥*. The pair
(M7, Ms) is termed a residual code for ¥ iff every word w € ¥* possesses a
unique decomposition

w=wp... WWkt+1, k>0,

where w; € M, 1 <1i <k, and wiy1 € Mo.
The following results are immediate from the definition.

Lemma 2 If (M1, Ms) is a residual code for 32, then My is a code, A & My and
A€ Ms.

The proof of the next lemma is analogous to the proof of Lemma 1.
Lemma 3 The pair (My, Ms) (resp. (Mj, M})), where
My = {baa, bba, bbb, bab, aa, ab}, Ma = {ba, bb, a,b, \}

(resp. M| = {aaa, aab, aba, abb, ba,bb}, My = {aa, ab, a,b, \})

is a residual code for {a,b}.

We are now ready for the definition of semi-smoothness. A left inverse f~!
of a morphism f : ¥*—X* is termed semi-smooth iff there is a residual code
(M, My) for ¥ such that the following conditions (i)—(iv) are satisfied.

(i) For all a € X, f(a) € M.

(ii) For all w € My, |f~(w)| = 1.
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(iii) For all w € My, f~1(w) = A.

(v) fHwr . wpwirr) = F N wr) L f 7 H(wg)
whenever k > 1, w; € My, for 1 <1i <k and wi41 € M.

Observe that (i)—(iv) above correspond to (i)—(iv) in the definition of smooth-
ness. Because f has a left inverse, it is a code and, therefore, the words f(a) in
(i) are distinct. If we let M; to consist of all words of length n, for some n > 1,
and Ms to consist of all words shorter than n, then (M7, M) is a residual code
for 3. Hence, we obtain the following result.

Theorem 11 Every smooth left inverse is semi-smooth but not vice versa.
The left inverses g~! and f~! defined after Lemma 1 are semi-smooth. They
cannot be smooth because neither g nor f is constant-length.

We now return to Theorem 2. It turns out that the essential requirement
is that the words in M7 are of equal length. The following theorem shows that

not even semi-smoothness together with the morphisms being constant-length
suffices.

Theorem 12 There are constant-length codes f and g with semi-smooth left
inverses f~1 and g=' such that f~1g~'fg is not a morphism.

Proof. Choose ¥ = {a,b}. Define first f and g by
g: a—baa, b—bbb,

f: a—aa, b—abb.

We now apply Lemma 3, and define semi-smooth inverses g=! and f~!, using
the residual code (M7, M>) in connection with g~!, and (M], MJ}) in connection
with f~1. Since, for argument values in M, and M}, the values of the inverses
equal )\, it suffices to define the inverses for argument values in M; and Mj:

g~ ': baa—a, bbb—sb, bba—sa, bab—sa, aa—sb, ab—b,

f~': asa—sa, abb—sb, aab—sa, aba—sb, bb—sa, ba—b.

(Of course, (iv) in the definition of the semi-smoothness takes care of the re-
maining argument values.)
It is now immediately verified that

Flg7 fgbb) =ba £ bb=f"lg™ fg(b)f g™ fe(b).

Hence, f~tg~!fg is not a morphism. 0
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6 Unrestricted left inverses

We use the general term unrestricted for left inverses of codes h : ¥*—X* if
nothing is assumed concerning how the non-forced values are defined. It is not
even required that the left inverse is a total function. Of course, we can always
make it total by defining, for instance, h=!(w) = A\ for otherwise undefined
argument values w. Such a definitional extension will not cause any difficulties
because no morphic structure is assumed.

Rather bizarre constructions become possible for unrestricted left inverses.
In some sense the following result represents the culmination of such construc-
tions.

Theorem 13 Given an alphabet ¥ = {ay,...,a,}, n > 2, there are codes
frg : X*—5* with the following property. For every language L C X* (posibly
not even recursively enumerable), a left inverse gr.~! of g may be defined such
that, for every left inverse f~1 of f,

SCOM(f~, g7, f.9) = LU{A}.
Proof. The codes g and f are defined by
g: a¢—>a2a1i, 1<1<n,

f: ai—ailas, 1 <i<n.

Clearly, only A from the range of g is also in the range of f. Hence, when dealing
with unrestricted left inverses g~!, we may choose the value g~!(w) freely for
w= f(u), u#A\

We now define
91 (f(9(w))) = f(w) for w € L.

(Observe that this equation holds also for w = \.) For other argument values
(except the forced ones), gr, ! is undefined. It is immediate that the theorem
holds for g7, ~! thus defined. 0

Observe that g and f are fixed, and that only forced values of f ! are needed.

All the complexities of L are embedded in g7, *.

7 Undecidability

For decision problems it is necessary to assume that the left inverses are effec-
tively given. This is certainly true as regards g7, ~! if the language L is recursive
because then, for any w, we may effectively compute the value g='(w). The
following summarizes some of the undecidability results obtainable because of
Theorem 13.
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Theorem 14 Each of the following problems is undecidable for an effectively
giwen semi-commutativity set

S= SCOM(f™', 97" f.9).

Is S nonempty? (This means that S # {\}.) Is S finite? Is S regular? Is S
context-free? Is S = ¥*? Is S = K where K is some fized language?

Proof. Let L be given by a context-sensitive grammar in Theorem 13. Then L
is recursive. The theorem follows because all of the problems mentioned before
are undecidable for context-sensitive grammars. n

8 Conclusions

The original motivations for considering semi- commutativity sets come from
cryptography. We believe that we have shown the importance of these sets in
language theory. We have settled the basic problems concerning semi- commu-
tativity sets of morphisms, and investigated the sets both in case of restricted
and unrestricted left inverses. In our estimation, an important open research
area is the study of left inverses and the corresponding semi-commutativity sets
under the restriction that only words of length < 1 can be used as ”basic” values
7 (w). This is not the case in the definition of Theorem 13.
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